
Ceramic Composites for Next Step 
Nuclear Power Systems

Lance L Snead1, Will Windes2, 

James Klett1, and Yutai Katoh1

1 Oak Ridge National Laboratory, USA
2 Idaho National Laboratory, USA

Presented at the Euromat 2005, Prague
September 4-8, 2005



Generation IV 
The Next Generation Nuclear 

Power Reactors
• Generation IV is a multinational collaboration for the research, 
development, and construction next generation pilot nuclear power 
plant by 2015.

• Several Options Being Studied Internationally:

Very High Temperature Gas-Cooled Reactor
Gas-Fast Reactor
Molten Salt Reactor
Super Critical Water Reactor
Lead Fast Reactor
Sodium Fast Reactor



The Competitors for VHTR in 
the United States

• The Gas Turbine, Modular High-Temperature Reactor (GT-MHR)

• The Pebble Bed Modular Reactor (PBMR)





GT-MHR Control Rod Concept
(Courtesy of General Atomics)



• Workhorse alloy: steam generator, control rod and plenum application

• Incoloy 800 : Ni30-35, Cr(19-23), Fe(39.5 min), C(0.1max.),Ti+Al(0.3-1.2)

0

20

40

60

80

100

120

300 400 500 600 700 800 900 1000 1100

Incoloy 800 H for Nuclear Use

A
ll

ow
ab

le
 S

tr
es

s 
(M

P
a)

 
(A

S
M

E
 C

la
ss

 1
 C

om
p

on
en

t)

Temperature (°C)

Fort
St. Vrain

PBMR

GT-MHR

VHTR



Matrix
Fiber

Interphase

Composite -v- Monolithic Ceramics

fib
er

m
at

ri
x

crack

crack
arrest

LOAD

Composite materials, whether platelet, chopped 
fiber, or continuous fiber reinforced are superior
“engineering”materials to monolithics:

• generally higher strength, especially in tension
• higher Weibull modulus (more uniform failure)
• much higher damage tolerance (fracture toughness)
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Control Rod Tube Architecture
± 20° spiral weave

σhoop= < 10 MPa
σaxial = 20-50 MPa

Composite Articulated Control 
Rod Segment

Gen IV Program
Fabrication C/C and SiC/SiC

Testing (including irradiation)
Scaling

ASTM Test Methods
QA
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Ceramic Structural Composites
For Nuclear Application

Carbon/Carbon Composites

- In widespread structural use
- Manufacturing and design methods understood
- Expensive…



Graphite Under Irradiation
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CFC’s Under Irradiation
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Composite allows “engineering” of
properties such as dimensional change

sample
surface

bundle
shrinkage

bundle
swelling

gap
500°C 800°C~ 10 dpa (1 FP year)
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Ceramic Structural Composites

SiC/SiC Composites

- Essentially no current structural application
- Manufacturing and design methods immature



Ceramic Structural Composites

SiC/SiC Composites Under Irradiation

- May survive for life of machine
- Thermal conductivity is likely less than assumed
- Electrical conductivity appears not to be a problem
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Silicon Carbide Under Irradiation

• Irradiation-induced 
thermo-physical 
property changes 
(swelling, thermal 
conductivity, strength) 
saturate by a few dpa for 
T< 1000°C.  Driven by 
simple defect clusters.

• Irradiation 
performance for 
T>1000°C is not well 
understood.



SiC/SiC Composites : Strength and Stability

Bend strength of irradiated
“advanced” composites show
no degradation up to 10 dpa

1st- and 2nd generation 
irradiated SiC/SiC
composites show

large strength loss after 
doses >1 dpa
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*  does not include prototyping or NDE evaluation.

Irradiation-Induced Property Change @ 1000°C
Material Cost

$/Kg
Life
(dpa)

Volume Strength
(MPa)

Modulus Thermal
Conductivity

W/m-K
Superalloy 25 ~5 - - - -

CFC* ~200 10-15 -5% 150 250 +20% 250 180
SiC/SiC* ~400 >50? +1% 75 75 -10% 50 20

Materials Comparison at 1000°C

0.005 dpa1200°C1000°CHot Duct Inner Shell
<0.05 dpa600°C600°CFloor Blocks

0.05 dpa1300°C650°CUpper Plenum Shroud/Core 
Restraint

25 dpa1600°C1200°CControl Rods & Guide 
Tubes

Lifetime DoseMaximum 
Temp

Operating 
Temp

NGNP



Concluding Remarks

• Both GFR and NGNP concepts will require composite materials to achieve design 
goals, most importantly core internal temperature.

• Presently, there are only two viable candidate composites are C/C and SiC/SiC.  

• C/C composite are more mature and have clear advantages in cost, 
manufacturability and some thermomechanical properties (eg thermal conductivity.)

• SiC/SiC has a clear advantage on irradiation stability, specifically a lower level of 
swelling and retention of mechanical properties.  Offers possibility lifetime component 
for control rod application to NGNP (C/C would require 2-3 replacements over life.)

• Ceramic composite will require substantial investment in ASTM development, NDE 
development, and must be handled by prototyping and proof testing.  Substantial 
additional costs compared to more conventional alloys.



Questions ?

Questions ???
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