Ceramic Composites for Next Step Nuclear Power Systems

Lance L Snead¹, Will Windes², James Klett¹, and Yutai Katoh¹

¹Oak Ridge National Laboratory, USA

² Idaho National Laboratory, USA

Presented at the Euromat 2005, Prague September 4-8, 2005

Generation IV The Next Generation Nuclear Power Reactors

• Generation IV is a multinational collaboration for the research, development, and construction next generation pilot nuclear power plant by 2015.

• Several Options Being Studied Internationally:

Very High Temperature Gas-Cooled Reactor Gas-Fast Reactor Molten Salt Reactor Super Critical Water Reactor Lead Fast Reactor Sodium Fast Reactor

The Competitors for VHTR in the United States

- The Gas Turbine, Modular High-Temperature Reactor (GT-MHR)
- The Pebble Bed Modular Reactor (PBMR)

Comparison of Example VHTR Operating Conditions and Features with GT-MHR and Fort St. Vrain

Condition or Feature	Fort St. Vrain HTGR	GT-MHR	VHTR
Power Output (MWt)	841	600	600 - 900 (Depends on core heigh
Average power density (w/cm ³)	6.3	6.5	4 - 6.5
Coolant and Pressure (MPa / psia)	Helium @ 4.83 / 700	Helium @ 7.12 / 1032	Helium @ 7.12 / 1032
Moderator	Graphite	Graphite	Graphite
Core Geometry	Cylindrical	Annular	Annular
Safety Design Philosophy	Active Safety Sys	Passive	Passive
Plant Design Life (yrs)	30	60	60
Core outlet temp. (°C)	785	850	1000
Core inlet temp. (°C)	406	488	490 (Needs to be optimized
Fuel – Coated Particle	HEU-PyC/SiC Th/ 93% ²³⁵ U	LEU-PyC/SiC	a) LEU-PyC/SiC b) LEU-PyC/ZrC
Fuel Max Temp – Normal Operation (°C)	1260	1250	a) ~1250 b) ~ 1400

GT-MHR Control Rod Concept

(Courtesy of General Atomics)

Incoloy 800 H for Nuclear Use

- Workhorse alloy: steam generator, control rod and plenum application
- Incoloy 800 : Ni30-35, Cr(19-23), Fe(39.5 min), C(0.1max.), Ti+Al(0.3-1.2)

Composite -v- Monolithic Ceramics

Composite materials, whether platelet, chopped fiber, or continuous fiber reinforced are superior "engineering" materials to monolithics:

- generally higher strength, especially in tension
- higher Weibull modulus (more uniform failure)
- much higher damage tolerance (fracture toughness)

Composite -v- Monolithic Ceramics

	Toughness MPa/m ^{1/2}
Steel	> 50
Tungsten	< 20
Monolithic Ceramic	3
Platelet Reinforced Ceramic	6
Chopped Fiber Reinforced	10
Continuous Fiber Reinforced Ceramic	25-30

	Monolithic	Composite
	Strength (MPa)	Strength (MPa)
SiC	100 ± 50	220 ± 20
Graphite	107 ± 20	176 ± 20

Operating Range, Highly Irradiated Structural Materials

Ceramic Structural Composites For Nuclear Application

Carbon/Carbon Composites

- In widespread structural use
- Manufacturing and design methods understood
- Expensive...

Graphite Under Irradiation

Ceramic Structural Composites

SiC/SiC Composites

- Essentially no current structural application
- Manufacturing and design methods immature

Ceramic Structural Composites

SiC/SiC Composites Under Irradiation

- May survive for life of machine
- Thermal conductivity is likely less than assumed
- Electrical conductivity appears not to be a problem

Silicon Carbide Under Irradiation

SiC/SiC Composites : Strength and Stability

SiC/SiC Composites : Thermal Conductivity

Materials Comparison at 1000° C

			Irradiation-Induced Property Change @ 1000°C			
Material	Cost \$/Ka	Life	Volume	Strength	Modulus	Thermal
	ψINg	(upa)		(MPa)		Conductivity
						W/m-K
Superalloy	25	~5	-	-	-	-
CFC*	~200	10-15	-5%	150→250	+20%	250→180
SiC/SiC*	~400	>50?	+1%	75 → 75	-10%	50→20

* does not include prototyping or NDE evaluation.

NGNP	Operating Temp	Maximum Temp	Lifetime Dose
Control Rods & Guide Tubes	1200° C	1600°C	25 dpa
Upper Plenum Shroud/Core Restraint	650° C	1300° C	0.05 dpa
Floor Blocks	600° C	600° C	<0.05 dpa
Hot Duct Inner Shell	1000° C	1200° C	0.005 dpa

Concluding Remarks

• Both GFR and NGNP concepts will require composite materials to achieve design goals, most importantly core internal temperature.

• Presently, there are only two viable candidate composites are C/C and SiC/SiC.

• C/C composite are more mature and have clear advantages in cost, manufacturability and some thermomechanical properties (eg thermal conductivity.)

• SiC/SiC has a clear advantage on irradiation stability, specifically a lower level of swelling and retention of mechanical properties. Offers possibility lifetime component for control rod application to NGNP (C/C would require 2-3 replacements over life.)

• Ceramic composite will require substantial investment in ASTM development, NDE development, and must be handled by prototyping and proof testing. Substantial additional costs compared to more conventional alloys.

<u>Yield Strength of Various Structural Materials</u>

