EUROMAT 2005, 5-8 September 2005, Prague, Czech Republic European Congress on Advanced Materials and Processes

Melt Growth Composites for Ultra High Efficiency Gas Turbine Components

September 6, 2005

Yoshiharu Waku, Narihito Nakagawa*, Kenji Kobayashi**, Kazumi Hirano*** and Shinya Yokoi

HPGT Research Association

*Ube Research Laboratory, Ube Industries, LTD.

**Advanced Technology Department, IHI.

***National Institute of Advanced Industrial Science and Technology

Background & Motivation

□ Single Crystal Eutectic Composites ex. Al₂O₃/Y₃Al₅O₁₂(YAG), Al₂O₃/GdAlO₃(GAP), Al₂O₃/Er₃Al₅O₁₂(EAG)

□ Advantages

- Three-dimensional network structure
- High strength up to melting point temperature
- High creep and oxidation resistances
- Good machinability and productivity to fabricate complex shape components

Disadvantages

• Low fracture toughness and low thermal shock resistance

New eutectic composites

Improving design methodology

Ultra-high temperature structural components for gas turbine

Combustor liner, Turbine nozzle & Blade

MGC Fabrication Process

Molybdenum divided mold

Al₂O₃/YAG plate

Al₂O₃/GAP 53 mm rod

Microstructure and Three- Dimensional Network of MGCs

Three-dimensional connected porous structure of irregular shape

A 3D image showing the network structure of the Al₂O₃/YAG system MGC obtained from X-ray computerized tomography (micro X-ray CT).

Temperature Dependence of Strength

Thermal Stability of the microstructures

The grain growth was slightly observed after 1000 hours. However, the present MGC were shown to be comparatively stable without void formation during lengthy exposure at 1973 K in an air.
The MCC components have excellent evidetion resistance with no change in dimensions, weight and

• The MGC components have excellent oxidation resistance with no change in dimensions ,weight and surface roughness after 1000 hour at 1973 K in an air.

SEM images of the microstructures of cross-section perpendicular to the solidification direction of the Al_2O_3/GAP binary MGCs after 1000 hours of heat treatment at 1973 K in an air.

Length	0 h	500 h	1000 h	Dimensional
				change
L1(mm)	43.971	43.977	44.000	0.029
W1(mm)	10.614	10.614	10.598	0.022
W 2 (mm)	5.389	5.385	5.371	- 0.019
Weight (g)	26.194	26.232	26.227	0.019
Rouphness (Ra/µm)	0.46	0.78	0.75	0.29

L1

Organization of NEDO Project

National Project in Japan

A NEDO project on MGC application technology to ultra high efficiency gas turbine system (FY2001-05)

Materials & Process Technology: UBE

R&D on Innovative Process & Manufacturing Technology

- Near-Net Shape Casting of Complex Shape Components
- Improvements of Materials Reliability & Long-term Durability under Severe Environments (highly water vapor pressurized at ultra-high temperatures)

System Integration Technology: IHI & KHI

R&D on Gas-Turbine System Integration Technology

- MGC Gas Turbine System & Cycle Analysis
- MGC Turbine Nozzle & Vane

MGC Bowed Stacking Nozzle

Low NOx Combustor with MGC panels

Cycle Analysis - Efficiency Improvements -

Output Power : 5000kW

MGC Components of High Efficiency Gas Turbine

Steady State Temperature and Thermal Stress Distribution at TIT of 1973 K

High Temperature Test Rig at 1973 K

The structural integrity of MGC turbine nozzles and heat shield panels was verified under the steady-state and trip conditions at 1773K.

- * The high temperature test rig (maximum temperature ~1973 K) have been improved to measure continuous temperature distribution on the nozzle surface by using an infrared camera.
- * We are now planning the test rig at an inlet gas temperature level of 1973 K in order to ensure the structural integrity of the MGC bowed stacking nozzle and heat shield panel under the steady-state and thermal cycle conditions.

Concluding Remarks

- MGCs have the unique microstructure consisting of threedimensionally continuous and complexly entangled singlecrystal Al₂O₃ and single-crystal compounds.
- MGCs (melt growth composites) have many advantages over other ultra-high temperature structural materials.
- The NEDO project on MGCs Gas Turbine System was briefly introduced.
- The structural integrity of MGC turbine nozzles and heat shield panels was verified under the steady-state and trip conditions at 1773K.