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Carbon based materials (CFC) are present candidates 
for the strike point areas of the ITER divertor

Advantages of CFC materials:
Very good thermo-mechanical properties (thermal conductivity at 
RT > 300 W/mK; high mechanical strength) 
⇒ Excellent power handling capability

No melting under transient power loads and off-normal events 
(ELMs, disruptions, VDEs)

Low Z → low radiative power losses in the plasma

Broad tokamak operation experience with C-based materials →
allows operational flexibility

low neutron activation

Introduction
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Main disadvantages of C-based materials for fusion 
application (graphite and/or CFC) :

CFC, graphite: chemical reactivity with H → erosion, tritium 
co-deposition → the divertor is not a permanent component

Graphite: thermal conductivity not high enough 
(>300 W/mK at RT needed)

CFC: anysotropy
→ unequal, partly severe erosion by brittle destruction
→ joining process to heat sink more difficult

CFC: high cost
CFC, graphite: neutron damage > 0.5 dpa → loss of thermal 
conductivity, dimensional instability

Introduction
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Possible way for improving carbon materials for fusion 
application: addition of metallic or ceramic dopants.
Effects of dopant addition (several at.%):

Self-passivation against chemical erosion by hydrogen. 
Passivation occurs due to
− Influence of dopants on thermal activated hydrocarbon release 
− Dopant enrichment at the surface due to preferential erosion of C 

Introduction
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Possible way for improving carbon materials for fusion 
application: addition of metallic or ceramic dopants.
Effects of dopant addition (several at.%):

Self-passivation against chemical erosion by hydrogen. 
Passivation occurs due to
− Influence of dopants on thermal activated hydrocarbon release 
− Dopant enrichment at the surface due to preferential erosion of C 

Both effects are the more effective the smaller the dopants particle size 

Improvement of thermal conductivity → dopants showing 
catalytic effect on the graphitization

Carbide addition → reinforcement effect ⇒ improved strength

In all cases improvement the more effective the smaller the particle 
size of the dopants

Introduction

nanoscaled dopant distribution
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Introduction

Aim of this work: development and optimization of 
fine-grained isotropic graphite for plasma facing
application by doping with finely dispersed carbides

reduction of chemical erosion by H while 
improving thermo-mechanical properties (high 
thermal conductivity, high thermal-shock resistance); 
reduced costs compared to CFC materials.

Keys for development:
Selection of appropriate dopants and raw materials
Use of starting powders with very small particle size
Rigorous control of all manufacturing steps
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Self-sintering
mesophase carbon

(MCMB)

Carbide powders 
(4 at% metal):
TiC
VC
ZrC APS ~3 µm
WC APS ~0.2 µm

APS ~1 µm

Jet-milling
APS ~ 0.6 µm

Mixing

Uniaxial molding, <50 MPa, 
cylinders, beams

Carbonization, N2, 1000°C

Graphitization, He, >2500°C

CIP, >150 MPa

HIP: >1700°C,
200 MPa

Manufacturing route
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Results

Parameters investigated after different graphitization cycles:

Carbide distribution
Lc, thermal conductivity
Porosity (total, open)
Influence of dwell time during graphitization, and of a HIP
step subsequent to graphitization

Mechanical properties (flexural strength, Young’s modulus, 
strain-to-failure), fracture surfaces → responsible defect.
Optimum dopant concentration (only for TiC)
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Results
Carbide distribution:
• Homogeneous distribution after carbonization (1000°C)
• After graphitization → strong influence of cycle parameters 

(Tgraph, dwell time): longer dwell time ⇒
Coarsening

1 h dwell 2 h dwell
TiC-doped sample after graphitization at 2650°C 
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VC-doped sample after graphitization 
at 2600°C

Local agglomeration, carbide depleted zones → detrimental 
for mechanical properties

⇒Necessary to find compromise between high Tgraph and
long dwell time

Results
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Results
Thermal conductivity:
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Results
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Results
Mechanical properties; influence of HIP
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Fracture surfaces: VC-doped material

Results
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Fracture surfaces: WC-doped material

Results
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Results

Determination of optimum dopant concentration
→ variation of Ti content between 2 and 12 at% Ti
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Optimum Ti concentration (for TiC APS ∼1 µm): ∼4 at.% Ti
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Comparison
Comparison with present candidate materials:

European reference CFCs: NB31 and Concept 2

Pitch
PAN
Needling

Pitch
PAN
Needling

3 – 8
σf
100 –12550 - 2301.92

(undoped)
Doped graphites

σt 106
57
13

360
1.86Concept 2

107
15
12

σt 130
30
19

323
117
115

1.90NB31

Young’s 
modulus 

(GPa)

Strength 
(MPa)

Thermal 
conduct. 
(W/mK)

Density 
(g/cm3)

Advantages: low chemical erosion + good thermo-mechanical 
properties + isotropy + low cost; further improvement possible
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Conclusions and outlook

• Doping → efficient way for improving isotropic graphite such as 
to achieve specifications of candidate C-based materials for ITER

• Longer dwell time during graphitization → ↑ Lc → ↑ thermal 
conductivity. But carbide coarsening and agglomeration, 
depending on temperature → ↓ flexural strength ⇒ balance 
between dwell time and graphitization temperature to obtain 
optimum properties.

• HIP subsequent to graphitization → ↓ porosity → improved 
mechanical properties: ↑ flexural strength, ↓ Young’s 
modulus, ↑ strain-to-failure ⇒ ↑ thermal shock resistance.

• Further improvement expected with nanoscaled dopant
distribution ExtreMat IP → extension to other applications
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