

Development of finely dispersed doped carbon-based materials for the strike point areas of the ITER divertor

C. García-Rosales, N. Ordás and I. López Galilea CEIT and TECNUN (University of Navarra) San Sebastián, SPAIN

Euromat 2005, Prague, September 6 2005

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials
- Conclusions and outlook

Carbon based materials (CFC) are present candidates for the strike point areas of the ITER divertor

Advantages of CFC materials:

- Very good thermo-mechanical properties (thermal conductivity at RT > 300 W/mK; high mechanical strength)
 - ⇒ Excellent power handling capability
- No melting under transient power loads and off-normal events (ELMs, disruptions, VDEs)
- * Low $Z \rightarrow$ low radiative power losses in the plasma
- \blacklozenge Broad tokamak operation experience with C-based materials \rightarrow allows operational flexibility
- low neutron activation

Introduction

Main **disadvantages** of C-based materials for fusion application (graphite and/or CFC) :

- ◆ CFC, graphite: chemical reactivity with H → erosion, tritium
 co-deposition → the divertor is not a permanent component
- Graphite: thermal conductivity not high enough (>300 W/mK at RT needed)

CFC: anysotropy

- \rightarrow unequal, partly severe erosion by **brittle destruction**
- \rightarrow joining process to heat sink more difficult

CFC: high cost

◆ CFC, graphite: neutron damage > 0.5 dpa → loss of thermal conductivity, dimensional instability

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials
- Conclusions and outlook

Possible way for **improving carbon materials for fusion application**: addition of **metallic or ceramic dopants**.

Effects of **dopant addition** (several at.%):

- Self-passivation against chemical erosion by hydrogen.
 Passivation occurs due to
 - Influence of dopants on thermal activated hydrocarbon release
 - Dopant enrichment at the surface due to preferential erosion of C

Possible way for **improving carbon materials for fusion application**: addition of **metallic or ceramic dopants**.

Effects of **dopant addition** (several at.%):

- Self-passivation against chemical erosion by hydrogen.
 Passivation occurs due to
 - Influence of dopants on thermal activated hydrocarbon release
 - **Dopant enrichment** at the surface due to preferential erosion of C

Both effects are the more effective the smaller the dopants particle size

- ✤ Improvement of thermal conductivity → dopants showing catalytic effect on the graphitization
- ☆ Carbide addition → reinforcement effect ⇒ improved strength

In all cases improvement the more effective the smaller the particle size of the dopants **manoscaled dopant distribution**

Introduction

Aim of this work: development and optimization of fine-grained isotropic graphite for plasma facing application by doping with finely dispersed carbides reduction of chemical erosion by H while improving thermo-mechanical properties (high thermal conductivity, high thermal-shock resistance); reduced costs compared to CFC materials.

Keys for development:

- Selection of appropriate **dopants** and raw materials
- Use of starting powders with very small particle size
- Rigorous control of all manufacturing steps

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials
- Conclusions and outlook

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials

Conclusions and outlook

Parameters investigated after different graphitization cycles:

- Carbide distribution
- ✤ L_c, thermal conductivity
- Porosity (total, open)
- Influence of dwell time during graphitization, and of a HIP step subsequent to graphitization
- ★ Mechanical properties (flexural strength, Young's modulus, strain-to-failure), fracture surfaces → responsible defect.
- Optimum dopant concentration (only for TiC)

Carbide distribution:

- Homogeneous distribution after carbonization (1000°C)
- After graphitization → strong influence of cycle parameters (T_{graph}, dwell time): longer dwell time ⇒
 - Coarsening

1 h dwell2 h dwellTiC-doped sample after graphitization at 2650°C

tecnun

☆ Local agglomeration, carbide depleted zones → detrimental for mechanical properties

VC-doped sample after graphitization at 2600°C

⇒ Necessary to find compromise between high T_{graph} and long dwell time

Thermal conductivity:

Total and open porosity after graphitization at different temp.:

Decrease of porosity by **HIP** subsequent to graphitization:

Mechanical properties; influence of HIP

Fracture surfaces: VC-doped material

Fracture surfaces: WC-doped material

Determination of **optimum dopant concentration** \rightarrow variation of **Ti** content between 2 and 12 at% Ti

Optimum Ti concentration (for TiC APS ~1 μm): ~4 at.% Ti

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials
- Conclusions and outlook

Comparison

Comparison with present candidate materials:

European reference CFCs: NB31 and Concept 2

		Density (g/cm³)	Thermal conduct. (W/mK)	Strength (MPa)		Young's modulus (GPa)
NB31	Pitch		323	σ_{t}	130	107
	PAN	1.90	117		30	15
	Needling		115		19	12
Concept 2	Pitch	1.86	360	σ_{t}	106	
	PAN				57	
	Needling				13	
Doped graphites		1.92 (undoped)	50 - 230	σ _f 100	-125	3 – 8

Advantages: low chemical erosion + good thermo-mechanical properties + isotropy + low cost; further improvement possible

- Introduction
- Why doped carbon for ITER?
- Manufacturing route
- Results
- Comparison with candidate materials

Conclusions and outlook

- Doping → efficient way for improving isotropic graphite such as to achieve specifications of candidate C-based materials for ITER
- Longer dwell time during graphitization → ↑ L_c → ↑ thermal conductivity. But carbide coarsening and agglomeration, depending on temperature → ↓ flexural strength ⇒ balance between dwell time and graphitization temperature to obtain optimum properties.
- HIP subsequent to graphitization → ↓ porosity → improved mechanical properties: ↑ flexural strength, ↓ Young's modulus, ↑ strain-to-failure ⇒ ↑ thermal shock resistance.
- Further improvement expected with nanoscaled dopant
 distribution → ExtreMat IP → extension to other applications

END

Development of finely dispersed doped carbon-based materials for the strike point areas of the ITER divertor

C. García-Rosales, N. Ordás and I. López Galilea CEIT and TECNUN (University of Navarra) San Sebastián, SPAIN

Euromat 2005, Prague, September 6 2005

Introduction

Fluence dependence of chemical erosion yield

(E. de Juan Pardo et al., Physica Scripta T111, 2004)

