Oxide/Oxide Re-Crystallized Fiber Composites For Use at > 1400 °C

Andreas Krell, Hagen Klemm, Thomas Hutzler, Axel Bales

Fraunhofer – Institut für Keramische Technologien und Sinterwerkstoffe (IKTS) Dresden, Germany

O b j e c t i v e : Materials for use in gas turbines at \geq 1400 °C / \geq 10,000 h

- ⇒ (i) FIBER composites (enabling damage tolerance → thermal shock stability)
 (ii) OXIDES (because of limited thermodynamic stability of non-oxides > 1400 °C)
 → higher creep rates of polycrystals compared with optimized non-oxides
 - \Rightarrow SINGLE crystalline fibers.

EUROMAT 2005: Symp. C31 "Materials for Gas Turbines" / Ceramics Session Re-Crystallized Fiber OCMC for > 1400 °C Pr

EUROMAT 2005: Symp. C31 "Materials for Gas Turbines" / Ceramics Session
Re-Crystallized Fiber OCMC for > 1400 °C
Prage

Prague, Sept. 6 2005

Strength & Damage tolerance at room temperature:

First tests of plane samples in tension

Tests of tubes (rings) in diametral compression:

EUROMAT 2005: Symp. C31 "Materials for Gas Turbines" / Ceramics Session **Re-Crystallized Fiber OCMC for** > 1400 °C Pra

Prague, Sept. 6 2005

Challenges:

(1) *Degree* of re-crystallization

□ <u>Requested</u> length of single-crystalline fiber-segments for minimum creep?

□ <u>Possible</u> degree of re-crystallization ?

(2) Re-crystallization with *minimum sinter-bridging*

(\rightarrow damage tolerance !)

(3) Re-crystallization with *tailoring fiber/matrix binding*

(\rightarrow damage tolerance, total creep)

Re-Crystallized Fiber OCMC for > 1400 °C

Prague, Sept. 6 2005

Challenges:

(1) Degree of re-crystallization

□ <u>Requested</u> length of single-crystalline fiber-segments for minimum creep?

Describe degree of re-crystallization ?

dry H_2 / 1750 °C / 1 h

wet H₂ (dew pt 30 °C) / 1800 °C / 1 h

Ar / 1750 °C / 1 h

Prague, Sept. 6 2005

іктз

Re-Crystallized Fiber OCMC for >1400 °C

Prague, Sept. 6 2005

Re-Crystallized Fiber OCMC for > 1400 °C

Prague, Sept. 6 2005

Optional: Post - Infiltration

Re-Crystallized Fiber OCMC for >1400 °C

Prague, Sept. 6 2005

(-> damage tolerance at room temp., thermal shock resistance, creep resistance)

Keramische Technologien und Sinterwerkstoffe

Re-Crystallized Fiber OCMC for > 1400 °C

Re-Crystallized Fiber OCMC for > 1400 °C

Re-Crystallized Fiber OCMC for >1400 °C

Prague, Sept. 6 2005

Testing of first tube demonstrators : **Creep Testing at \geq 1300 °C**

Re-Crystallized Fiber OCMC for > 1400 °C

Prague, Sept. 6 2005

First creep tests at 1300°C:

(applied stress 9 MPa)

Re-Crystallized Fiber OCMC for >1400 °C

First use of hot-corrosion results for fiber OCMC:

EUROMAT 2005: Symp. C31 "Materials for Gas Turbines" / Ceramics Session Re-Crystallized Fiber OCMC for > 1400 °C Prag

Prague, Sept. 6 2005

Conclusions

und Sinterwerkstoffe