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Ferritic/Martensitic Steels For 
Elevated-Temperature Service

• Steels developed for fossil-fired power plants
− Advantages:  thermal properties and economics
− Limitations:  upper temperature limit on strength

• Steels limited to 550-600°C

• Steels proposed for nuclear applications—
fission and fusion power plants
− Advantages demonstrated for fast reactors in 1960s
− Steels adopted for fusion applications
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Ferritic and Martensitic Steels 
for Fusion Reactor First Wall

• Ferritic/martensitic steels were chosen 
because of advantages over austenitic 
stainless steels:
− Thermal properties

• Higher thermal conductivity
• Lower thermal expansion

− Lower void swelling during irradiation
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Choice of Steels for Fusion

• First steels were commercial Cr-Mo steels 
(HT9, mod. 9Cr-1Mo, 2¼Cr-1Mo) from power-
generation industry

• Reduced-activation steels were developed for 
fusion for easier nuclear waste disposal
− Mo, Nb, and Ni were eliminated—long-life isotopes
− Cr-W steels were developed to replace Cr-Mo 

steels
− 7-10Cr-2WVTa steels were developed in Japan, 

Europe, and the United States 
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7-12% Cr Steels Have Tempered 
Martensite Microstructure

• Austenitized and air 
cooled (normalized) to 
produce martensite 

• Tempered to increase 
ductility and toughness

Sandvik HT9:   
Normalized-and-tempered
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Microstructure Limits Elevated-
Temperature Strength of Steels

• Large M23C6 particles pin 
subgrain boundaries

• Dispersion strengthening 
is by small MX particles 
(carbides, carbonitrides, 
and/or nitrides)

• Particles coarsen at 
elevated-temperatures

• Subgrain size increases 
and strength decreases 500 nm

______

M23C6

MX

HCM12A Steel (N &T)
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New Steels Required For Higher 
Temperature Applications

• Steels limited by elevated-temperature 
strength
− Higher temperature operation required for better 

efficiency
− Favorable properties of martensitic steels make 

them preferred candidates 
• Present best potential replacement:  Oxide 

dispersion-strengthened (ODS) steels
− Fabricated by expensive/complicated mechanical 

alloying and powder metallurgy techniques
− In development since 1960s
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Strength Of Steel Is Determined By 
Composition And Microstructure

• Deformation creates and moves dislocations 
through matrix

• Strength improved by hindering dislocation 
movement

• Composition determines precipitates and solid-
solution strength

• Microstructure effects (dislocation obstacles):
− Precipitates (small, high-number density)
− Grain boundaries and subgrain boundaries
− Dislocations
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High Strength Obtained From Large 
Number Of Small Obstacles

• Conventional steels:  strength obtained by 
heat treatment to produce tempered 
martensite strengthened by precipitates
− Large precipitates and low number density

• ODS steels:  strength from high number 
density of small oxide particles

• New steels:  strength from high-number 
density of nano-sized precipitates
− Conventional processing vs. expensive powder 

metallurgy techniques of ODS steels 
− Conventional processing to eliminate anisotropy 

that has plagued ODS steels
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Objective:  Develop New Steels For 
Elevated-Temperature Service 

• Use nitride (MX) precipitates for strengthening
• Obtain strength from high number density of 

small MX precipitate particles
− maximize number of small MX particles 
− minimize number of large M23C6 particles

• Produce steels by conventional processing
• Creep strength adequate to 700ºC (or higher)
• Computational thermodynamics used to devise 

compositions and processing of new steels
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Thermo-Mechanical Treatment (TMT) 
Devised to Produce New Steels

• Thermo-mechanical treatment:
− Heat to high temperature (1100-1300ºC) to put all 

elements in solid solution in austenite
− Cool to hot-rolling temperature (750-900ºC)
− Hot roll to introduce dislocations that act as  

heterogeneous nucleation sites for MX precipitation
− Anneal to grow precipitates to optimum size
− Air cool to form high-strength martensite matrix

• Strength from distribution of nano-sized MX 
nitride and/or carbonitride precipitates 
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TMT Process Applied to Nitrogen-
Containing Commercial Steel

• Initial work: nitrogen-
containing commercial 
steels (modified 9Cr-
1Mo, etc.) were used

• Plates (25.4-mm thick) 
were available and 
processed by hot rolling

• Results used to verify 
capability of process

Modified 9Cr-1Mo—New TMT
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Size and Number of Precipitates 
Depend on TMT Procedure

•Commercial modified 9Cr-1Mo Steel after two 
variations of new TMT treatment
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Precipitates Form On 
Dislocations During TMT

•Dark-field image—HCM12A (12CrWMoVNb steel)
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New Steel With High Number 
Density of Small Particles Produced

• Fe-9Cr-1MoNiVNbN steel 
400-g ingot) was melted, 
cast, and TMT

• High number density of 
small precipitates
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Size and Number of Precipitates Depend 
on TMT Processing Procedure

1 X 10224.0Fe-9Cr-1MoNiVNbN—1 
7.2 X 10223.3Fe-9Cr-1MoNiVNbN—2 

1.9 X 10218.0Modified 9Cr-1Mo—TMT3

2.1 X 10217.3Modified 9Cr-1Mo—TMT2

8.9 X 10217.2Modified 9Cr-1Mo—TMT1

7.9 X 101832Modified 9Cr-1Mo—N&T 

MX Precipitates
Average Size (nm)           Number Density (m-3)

Experiment

• High number density of nano-size particles obtained 
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TMT of New Steel Composition 
Produced High Strength

• Excellent strength 
from small ingot

• This despite inability 
to obtain nitrogen 
concentration desired
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TMT of New Steel Composition 
Produced High Strength

• Strength and ductility 
in tensile test are 
comparable to high-
strength experimental 
ODS steel
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TMT of New Steel Composition 
Produced High Strength

• Strength and ductility comparable to high-strength 
experimental ODS steel



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Creep-Rupture Life Of Modified 
9Cr-1Mo Steel Improved By TMT

• Rupture life increased 
by ≈80 times by TMT

• Excellent ductility for 
high strength
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Summary

• Process to produce nano-particle-strengthened 
martensitic steels are being developed 
− Present steels limited to 550-600ºC
− New steels should have use temperature >700ºC
− Steels developed for fossil-fired power plants and 

future nuclear fission and fusion power plants
• Initial work demonstrated possibilities:

− Microstructures contain high number density of 
small precipitate particles

− Steels show large increase in strength relative to 
steels produced by conventional heat treatment

− Strengths are comparable to strong ODS steel


