The Applicability of Synchrotron X-ray Analyses for VHTR materials

W. Hoffelner, J. Chen, M. Pouchon, C. Degueldre

Paul Scherrer Institut Switzerland

Combined cycle plant (electricity – hydrogen)

Possible Materials Selection (VHTR)

today	tomorrow
2¼ Cr-1 Mo	9-13 % Cr, superalloys
graphite	C/C, SiC/C, SiC/SiC
superalloys	ODS, intermetallics
graphite	C/C, SiC/C, SiC/SiC, ZrO ₂ superplastic, Refractory alloys
Superalloys, austenites	ODS, intermetallics, ZrO ₂ coatings

Multi-scale approach for investigation of high temperature materials

SLS (Swiss Light Source) Facility

Speciality

•High Quality

(high brightness, small beam size, excellent resolutions of microscopy/spectroscopy)

•High Flexibility

(wide wavelength spectrum)

•High Stability

(building, temperature, diagnostic equipment, top-up injection, high-precision power supplies)

>> microXAS BEAMLINE

X-ray Beam:

- photon flux: → ~ 10¹² photons/s on sample; max. flux density, min. source size, and max. brilliance
 - → energy range: ~ 4.5 20 keV
- monochromator: → energy resolution dE/E of ~10⁻⁴
- ► focusing optics: \rightarrow 1 x 1 μ m² spatial resolution
 - → focus adjustable to problem

Micro-Techniques:

- X-ray fluorescence
- X-ray absorption
- X-ray diffraction

Other Features:

- Active Samples
- Time Resolved Studies (e.g., pump and probe techniques)
- **Experimental Station** → modular concept for different (non-standard) applications
 - → controlled sample environment (pressure, temp., etc.)
 - → state-of-the-art detectors (speed, resolution, range, etc.)

Main techniques:

- X-ray Diffraction (XRD, Micro-XRD, SAXS)
- X-ray Absorption (EXAFS, XANES)
- X-ray Tomography

Main applications:

- Phase stability, layer formation, mechanical deformation,
- In-situ analyses

Oxide dispersion strengthened ferritic steel for VHTR-applications

TEM-micrograph showing yttria dispersoids in ferritic matrix

EXAFS-spectrum indicating that the yttria particles are cubic, highly stressed. Necessary input for modeling of deformation.

Corrosion investigation of an Intermetallic alloy (Ti-47AI-2W-0.5Si)

Investigation of Cold Rolled Zircaloy by EXAFS

Relative change of next neighbours as a result of cold rolling of zircaloy 2

Microstructure of Cold Rolled Zircaloy 2

Conclusions

- Synchrotron X-ray analyses provide a very powerful technique for analysis of VHTR-materials
- X-ray absorption allows the investigation of microstructural stability, phase changes and layer buildup
- First results on ODS and TiAl and Zircaloy demonstrate the applicability of EXAFS for analysis of environmental damage, stability of dispersoids and mechanical deformation.
- The current results were made on single experiments and they are still preliminary. A quantitative analysis needs additional microstructural investigations like TEM