

MATERIAL ISSUES FOR ADS: MYRRHA-PROJECT

A. Almazouzi and E. Lucon SCK•CEN, Mol (Belgium) On behalf of MYRRHA-TEAM and MYRRHA-Support

EUROMAT 2005 – Prague, Czech Republic

Sep 5-8, 2005

History: ADS Concept

The idea of using accelerators to produce fissionable material was put forward by G.T. Seaborg in 1941. He produced the first human-made plutonium using an accelerator.

In the 90's, C. Bowman's group at LANL and C. Rubbia's group at CERN designed a transmutation facility using thermal neutrons (CB) and fast neutrons (CR), for burning both the actinides and long life fission products from spent LWR fuel.

The facility, called an ADS, combines high intensity proton accelerators with spallation targets and a subcritical core.

Neutron beams

'ÉTUDE DE L'ÉNERGIE NUCLÉAIRI

Purpose of Myrrha

MYRRHA is intended to be:

- A full step ADS demo facility
- A P&T testing facility
- A flexible irradiation testing facility in replacement of the SCK•CEN MTR BR2 (100 MW)
- An attractive fast spectrum testing facility in Europe
- An attractive tool for education and training of young scientists and engineers
- A medical radioisotope production facility

MYRRHA materials

Neutronic Design constraints

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Design constraint on the spallation target

High Irradiation damage

Considerable He production rate

7

Core design constraints

(in the hottest rod)

Design constraints

Operating conditions	Properties needed
•Temperature (200 to 450°C)	•High thermal conductivity, heat resistance, low thermal expansion
•High dose rate /high dose (5.10 ¹⁵ n/cm ² .s and up to 40dpa/year)	•Low DBTT shift, sufficient strength, limited loss of ductility and fracture toughness, low swelling rate
 High He/dpa production rate (3 to 8 appm) 	•Adequate resistance to He and H embrittlement
•Beam trips and loading/reloading operations	Resistance to fatigue in LBE
•High stress level (100 MPa), operational trips	 High creep and fatigue resistance
•Aggressive conditions (LBE)	•Corrosion and liquid metal embrittlement resistance g

Materials for MYRRHA

The R&D program concerning the assessment of the materials suitable to sustain the design constraints should follow two routes:

•Experiments and tests to support the engineering design: the material has to be tested under condition relevant (as close as possible) to the foreseen operational conditions to ensure an economically viable and safe operation of MYRRHA.

 Research to build the ability to interpolate and extrapolate the results from laboratory tests to the real life.

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Material selection

- Al-alloys would not sustain high temperatures and also the irradiation conditions would induce severe embrittlement
- Ni-based alloys have a high affinity to dissolve in Pb-Bi besides their microstructural instability under irradiation
- Zr-alloys have shown drastic loss of strength and ductility under high temperature irradiation especially in the presence of H
- Austenitic steels are very susceptible to irradiation induced swelling and creep and poor resistance to corrosion in liquid Pb-alloys at high temperature.
- Ferritic-Martensitic steels (wrapper tubes in Phenix, candidate materials for Fast and Fusion reactors) for both fuel cladding and structures; they suffer from irradiation-induced embrittlement at low temperature

Stainless Steel (316L)

Does (dps)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

F/M Steels (why 9%Cr?)

Shift, °C

DBTT

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

T91/T92 same family but T92 has less Mo, more W and B

Design properties of selected materials

	Conc.			and the second sec	T		1	1
Element	Concentr (wt.%	auon a) E	lement	(wt.%)	Parameter		T91 martensitic	AISI 316 annealed
Carbon	0.05-0	12 Chromium		0.0-9.5			775/	7050
Manganese	0.30-0	.60 Mo	lybdenum	0.65-1.05	Density	kg/m³	//56	7950
Phosphorus	0.02 m	ax Nic	blum	0.06-0.10	Young's Modulus	Gpa	215	200
Sufur	0.01 m	ex Nit	napor	0.03-0.07	Poisson's Ratio		0.3	0.30
Climan	1.00.0	100.040		0.01				
ancon	0.20-0	0.20-0.60 All		0.04 max			(70	E 20
Nickel	0.40 m	0.40 max Van		0.18-0.25	Strength	MPa	670	520
	•	•	•		(tensile)			
	Con	nposition Range (v	rt.%)					
Product Forms	Plate, Sheet, Strip, and Flat Bar Pl		Pipe	andTubing	Yield Strength	MPa	500	210
ASME		· · · · · ·			Elongation	%	22	30
Specification	SA-240		SA-213 and SA-312		Thermal	1/K	1.01.10-5	1.65.10-5
Element	Minimum	Maximum	Minimum	Maximum	expansion	-		
Chramium	16.00	18.00	18.00	18.00	Heat capacity	J/kg-K	450	500
Nickal	10.00	14.00	10.00	15.00	Thermal	W/m-K	24.3	14
Molybidanum	2.00	3.00	2.00	3.00	conductivity		21.0	
Carbon	-	0.08	-	0.035				
Manganese	-	2.0		2.00	Neutron (th)	barn	2.61	2.76
Silicon	_	0.75	_	0.75	absorption			
Phosphorus		D.045		0.040	Section			
Ntrogen	_	0.10	_	-	ſ			
Sufur	_	0.03	_	0.03				

Irradiation effects on the yield stress (hardening)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Irradiation effects on DBTT (Charpy tests)

Irradiation under n&p: **He-effects**

Helium concentration (appm)

DETI

-54

õ

ADBTT_{C/M}(

t, °C

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Liquid Metal Embrittlement (LME) of irradiated materials

SSRT on irradiated 316L and T91 at 200 °C ➡ No evidence of LME!

Dedicated facility for PIE in LBE available at SCK•CEN

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

SCK · CEN

• Irradiated samples can be retrieved from the irradiation rig without any damage

• Tests can be performed under well controlled Liquid Metal chemistry

• SSRT, constant load and increasing load tests can be carried out at temperatures from 150°C to 500°C.

Multiscale computer simulation and experimental validation of irradiation damage in Fe-Cr based alloys

ΖZ

Conclusions

- In the last few years, a substantial effort has been made by SCK•CEN, in collaboration with partners inside and outside Europe (FP5: TECLA, SPIRE, MEGAPIE), on material issues for MYRRHA
- A R&D route is being set up in close collaboration with the design engineers
- With the aim of realising an XT-ADS at Mol, SCK•CEN is investing in:
 - Dedicated facilities (hot-cells, corrosion rigs, equipment for state-of-the-art material testing)
 - Special irradiation rigs in BR2 (higher temperatures)
 - Education of young researchers in material science (more than 10 PhDs, Post Docs or Engineers were hired during the last 2 years) 23