

IRRADIATION BEHAVIOUR OF THREE CANDIDATE STRUCTURAL MATERIALS FOR ADS SYSYEMS: EM10, T91 and HT9 (F/M STEELS)

E. Lucon and A. Almazouzi SCK•CEN, Mol (Belgium)

EUROMAT 2005 – Prague, Czech Republic

Sep 5-8, 2005

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Introduction: why F/M steels?

- Typical requirements for structural materials in ADS systems
 - Reproducible fabrication, workability and weldability
 - Heat resistance (limited decrease of strength and toughness)
 - Dimensional stability (limited irradiation swelling/creep)
 - Mechanical resistance (ductility and toughness) under irradiation in liquid metal
 - Corrosion resistance in Pb-Bi
 - Compatibility with Pb-Bi (resistance to LME Liquid Metal Embrittlement)

Window-design ADS Systems: foreseen service conditions

- Assuming that:
 - > Maximum proton current density = 70 μ A/cm²
 - One full calendar year of operation
- The following estimates were obtained from numerical computations:
 - Atomic displacements of the order of 100 dpa (window) and 50 dpa (container structure of the target)
 - Production of H (≈ 90000 appm), He (≈ 5000 appm) and other spallation elements (Ca, Ti, V, P, S)
 - Consequences on the mechanical properties of steels after irradiation:
 - Hardening (increase of tensile strength)
 - Embrittlement (degradation of toughness)

Considerations on the available materials

- Al alloys **>** poor heat resistance and severe embrittlement
- Ni-based alloys ⇒ high affinity to dissolve in Pb-Bi and microstructural instability under irradiation
- Zr alloys ⇒ drastic loss of strength and ductility under high T irradiation, especially in the presence of H
- Austenitic steels
 very susceptible to irradiation-induced swelling and creep + poor corrosion resistance in liquid Pb
- Ferritic/Martensitic steels ⇒ most promising candidates both for fuel cladding and structural applications; presently considered also for Fast and Fusion reactors

The SPIRE Project (5th European Framework Programme)

- Coordinated by CEA (F); running from 2001 to 2004
- Aimed at investigating mechanical and microstructural properties for F/M steels that are candidates for the spallation target window
- SCK•CEN contribution to Work Package 4 (*Neutron Irradiation* and Post-Irradiation Examination):
 - Irradiation at 200 °C up to 2 different doses of tensile, Charpy and fracture toughness specimens of conventional 9Cr and 12Cr steels in non-doped condition, in flowing water and no spectrum tailoring
 - Subsequent PIE

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

The materials selected

• Materials: EM10, T91, HT9 (undoped)

	С	Ni	Cr	Mo	Cu	Si	S	Al	Nb	Со	V
EM10	0.099	0.07	8.97	1.06	0.05	0.46	< 0.003	< 0.016	< 0.002	0.03	0.013
T91	0.099	0.24	8.8	0.96	0.05	0.32	0.004	< 0.01	0.06	0.03	0.24
HT9	0.204	0.66	11.68	1.06		0.45	< 0.003		0.03		0.29
	Ti	Ν	Р	Mn	0	В	\mathbf{W}	Sn	As	Sb	Fe
EM10	0.01	0.014	0.013	0.49	0.001	< 0.001	< 0.002	< 0.005	0.003	0.01	bal.
T91	< 0.005	0.03	0.02	0.43		< 0.0005	< 0.01	0.006	0.011	0.012	bal.
HT9			0.020	0.63			0.47				bal.

EM10 supplied by CEA

- Normalised at 990°C/50'
- Tempered at 750°C/60'

T91 provided by UGINE (heat 36224)

-Normalised at 1040°C/60'

-- Tempered at 760°C/60'

HT9 provided by Aubert&Duval (orig. denomination: 56 B.I.) - Normalised at 1050°C/30' - Tempered at 700°C/120'

Irradiation in BR2 (MISTRAL rig)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

1st batch: 6 cycles (July 02 \rightarrow July 03) 2nd batch: 8 cycles (July 02 \rightarrow Dec 03) Fast flux: 3.5 × 10¹⁴ n/cm².s

Test matrix

Material	Test type	Specimen type	Or.	Condition	# of tests performed	
EM10	Tensile	Cylindrical D = 2.4 mm	т	Unirradiated Irradiated	2 1 (batch 1) 1 (batch 2)	
	Charpy	KLST	T-L	Unirradiated Irradiated	12 12 (batch 1) 11 (batch 2)	
	Toughness	PCCv Precracked KLST	T-L	Unirradiated Irradiated	10 12 (batch 1) 12 (batch 2)	Additional
T91	Tensile	Cylindrical D = 2.4 mm	Т	Irradiated	1 (batch 1) 1 (batch 2)	included in
	Charpy	KLST	T-L	Irradiated	12 (batch 1) 12 (batch 2)	the original
	Toughness	PCCv		Unirradiated	10	
		Precracked KLST	T-L	Irradiated	12 (batch 1) 12 (batch 2)	programme
HT9	Tensile	Cylindrical D = 2.4 mm	L	Irradiated	1 (batch 1) 1 (batch 2)	
	Charpy	KLST	L-T	Irradiated	12 (batch 1) 12 (batch 2)	
	Toughness	Precracked KLST	L-T	Irradiated	12 (batch 1) 12 (batch 2)	

Dosimetry

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Material	Batch	Test type	Fluence (E > 1 MeV, n/cm ²)	Dose (dpa)
		Tensile	1.96×10^{21}	2.93
	1	KLST	1.69×10^{21}	2.53
		PKLST	$1.94 imes 10^{21}$	2.91
EM10		All	1.83 × 10 ²¹	2.74
	2	Tensile	2.91×10^{21}	4.36
		KLST	$2.51 imes 10^{21}$	3.76
		PKLST	$2.86 imes 10^{21}$	4.29
		All	2.71 × 10 ²¹	4.06
	1	Tensile	$1.94 imes 10^{21}$	2.91
		KLST	1.62×10^{21}	2.43
		PKLST	$1.67 imes 10^{21}$	2.51
T01		All	1.69 × 10 ²¹	2.53
191	2	Tensile	2.91×10^{21}	4.36
		KLST	2.39×10^{21}	3.58
		PKLST	$2.49 imes 10^{21}$	3.74
		All	2.71 × 10 ²¹	3.74
	1	Tensile	$1.78 imes 10^{21}$	2.67
		KLST	1.65×10^{21}	2.47
		PKLST	$1.67 imes 10^{21}$	2.51
ртн		All	1.67 × 10 ²¹	2.51
1119	2	Tensile	2.73×10^{21}	4.10
		KLST	2.47×10^{21}	3.70
		PKLST	$2.48 imes 10^{21}$	3.71
		AII	2.50 × 10 ²¹	3.75

<u>Batch 1 (overall)</u>

Fluence = $1.73 \times 10^{21} \text{ n/cm}^2$

$$Dose = 2.60 dpa$$

$$\sigma = 13\%$$

<u>Batch 2 (overall)</u>

Fluence = $2.57 \times 10^{21} \text{ n/cm}^2$

$$Dose = 3.86 dpa$$

$$\sigma = 12\%$$

Tensile tests: comparison among stress-strain curves

Tensile test results – EM10 (or.T)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Temperature (°C)

Tensile test results – T91 (or.T)

Tensile test results – HT9 (or.L)

Tensile test results – Summary

Tensile test results Comparison with other F/M steels

Literature data: irradiation effects tend to vanish above 300-400 °C

Impact test results – EM10 (or.T-L)

Impact test results – T91 (or.T-L)

Impact test results – HT9 (or.L-T)

Impact test results – Summary

Impact test results Comparison with the literature

Fracture toughness test results EM10 (or.T-L)

Fracture toughness test results T91 (or.T-L)

Fracture toughness degradation T91 – SCK data + literature

Fracture toughness test results HT9 (or.L-T)

Fracture toughness test results Summary and comparison with impact data

T_o shifts larger than DBTT shift: an issue for F/M (8%-12% steels)?

Another potential issue: applicability of Master Curve to high Cr steels

Conclusions (I)

• <u>Tensile tests</u>

- EM10 shows the least irradiation hardening (i.e. yield stress increase), HT9 the highest
- ➤ Hardening of T91 is approximately constant between 1st and 2nd batch (but <u>no saturation</u>! ➡ see CEA data at 40 dpa)
- Hardening data consistent with literature on RAFM steels

<u>Impact tests</u>

- EM10: USE increases (???) with irradiation; DBTT shift is moderate but dose effect is reversed (???)
- F91: irradiation embrittlement (USE and DBTT) is larger than for EM10; limited dose effect
- > EM10 and T91: irradiated data consistent with literature
- > HT9: largest embrittlement

RE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRI

Conclusions (II)

- Fracture toughness tests
 - Same ranking as for Cv tests
 - T_o shifts systematically larger than DBTT shifts (common feature with RAFM steels different from RPVS) = implications for safety analyses
 - Potential issue (*further research needed*): applicability of Master Curve to high Cr steels
 implications for safety analyses
- T91 has been selected as structural material for MYRRHA, on account of:
 - acceptable mechanical properties before and after irradiation
 - easiness of procurement and reasonable cost
 - insight gained on possible improvements in heat treatment and chemical composition (role of N,V)