

Effect of Irradiation-Induced Flow Localization on the Ductile Crack Resistance of a 9%Cr-Ferritic/Martensitic Steel

R. Chaouadi SCK•CEN,Boeretang 200, 2400 Mol, Belgium

Euromat-2005, Prague, September 5-8, 2005

Preliminary Remark / Outline

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- Plastic instability / Flow localization (macroscopic)
- Dislocation channel deformation (microscopic)

Irradiation-induced Flow Localization (IFL) = flow localization + dislocation channel deformation

OUTLINE Introduction → Tensile → J-R curve → SEM →Conclusions

IFL Phenomenon

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

• Macroscopic

⇒ usually observed at low T_{irrad}

⇒ tensile test: severe reduction of uniform elongation (drastic loss of work hardening capacity) → example

Microscopic

- TEM observation of "cleared" channels in which deformation occurs in narrow "reduced defect density" bands
- deformation does not occur in a homogeneous manner but, rather, restricted to a localized region (leading to premature fracture)

Question : what does a crack in such an environment ?

Flow Localization Monitoring

Experimental

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

> material: EUROFER-97 \$\Rightarrow\$9-%Cr-ferritic/martensitic steel used within the Fusion Material Program

irradiation in the BR2 reactor
 ⇒conditions: T_{irrad}=300°C ; Φ=0.3 – 2 dpa

testing

⇒tensile testing (at 10⁻⁴ s⁻¹) at T_{test}=T_{irrad}
 ⇒ 3-point bend testing using 20%-side grooved PCCv (precracked Charpy specimens) for crack resistance determination at T_{test}=T_{irrad}

Dose Effect on the Tensile Curve

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Tensile Properties

- Yield strength increase roughly as (neutron dose)^{1/2}
- Above ~1 dpa, no uniform elongation (work hardening drops to 0)
- Post-necking elongation is little affected by irradiation (13% to 9%)

Deformation Mode 3D versus 2D

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

load

unirradiated material: dislocations induced by plastic deformation provide additional obstacles to dislocation motion \rightarrow work hardening (3D)

irradiated material: induced dislocations remove irradiation defect clusters facilitating subsequent dislocation motion in a narrow cleared channel bands → dislocation channel deformation (~2D)

Flow Stress Description

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

$$\sigma_{flow}(\dot{\varepsilon}, T, \varepsilon) = \sigma_{y}(\dot{\varepsilon}, T) + \Delta \sigma_{\varepsilon}(\dot{\varepsilon}, T, \varepsilon)$$
$$\Delta \sigma_{\varepsilon} = \alpha \,\mu b \, M \,\sqrt{\rho}$$
$$\frac{d\rho}{d\varepsilon} = \frac{d\rho^{+}}{d\varepsilon} \bigg|_{stored} - \frac{d\rho^{-}}{d\varepsilon} \bigg|_{annihilated}$$

Unirradiated : positive dislocation balance -> work hardening

Irradiated : irradiation defects cleared by moving dislocations -> work hardening suppressed (material softening)

$$\sigma_{flow} = \sigma_{y} + \Delta \sigma_{\varepsilon} - \Delta \sigma_{defect \ clearing}$$

Effect of Irradiation on the Load-Displacement Test Record

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

displacement (mm)

5

Effect of Neutron Dose on the Crack Resistance

Effect of Neutron Dose on the Initiation Toughness

Neutron Dose Effect on the Tearing Resistance

SEM Examination of the SCK·CEN Fracture Surface

STUDIECENTRUM VOOR KERNENERGIE

SEM Examination of the SCK · CEN Fracture Surface

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Eurofer-97

$$T_{irrad} = T_{test} = 300^{\circ}C$$

 $\Phi = 2.1 dpa$

SEM Examination of the SCK · CEN Fracture Surface

ENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

classical ductile fracture

jerky crack propagation along preferential planes

SEM Examination of the SCK·CEN Fracture Surface

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

SCK · CE

15KV WD15mm

Mag1000X

T_{irrad}=T_{test}=300°C Φ=2.1 dpa

10µm

Fracture Zone Process

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

unirradiated condition

- homogeneous fracture process zone
- classical ductile fracture

irradiated condition

- restricted fracture process zone where the material is highly degraded facilitating crack extension
- fracture controlled by the plastic strain incompatibility in the heterogeneous process zone

the known microvoid coalescence process occurs in a region where plastic strain incompatibility promotes early void nucleation and accelerated coalescence

Ductile Fracture Description

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Ductile fracture mechanism

nucleation, growth and coalescence of voids around second phase particles

Unirradiated condition

Microvoid processes occur in a homogeneous process zone

$$\mathcal{E}_{nucleation} = f(\sigma_{ij}, \varepsilon_{ij}, \kappa) = \mathsf{f}(\mathsf{interface strength} \mathsf{strain incompatibility})$$

$$\frac{dR}{R} = \alpha \exp(1.5\xi) d\varepsilon_{p} = \mathsf{stress triaxiality ratio}$$

$$\left(\frac{R}{R_{0}}\right)_{c} \text{ or } \lambda_{int \, ervoid \, ligament}$$

Irradiated : microvoid process can easily be completed because of the heterogeneity introduced by the irradiation-induced localized deformation at the boundary between the two regions

Conclusions

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Irradiation-induced flow localization is an important issue that should be further investigated

- its monitoring using only a tensile test is not appropriate. Fracture toughness test is more appropriate.
- \succ change of deformation mode from 3D to 2D.
- Occurrence of flow localization drastically reduces the tearing resistance
- Further work
 - effect of loading rate
 - microstructure (desirable)
 - indications of reduction of IFL at dynamic rates. If confirmed, caution with Charpy impact data

Acknowledgements: special thanks to A. Leenaers, L. Van Houdt, E. Lucon, M. Decréton and T. Pardoen (UCL)