Heat Sink Materials for the Plasma-facing Components of Fusion Devices

H. Bolt, A. Brendel, T. Koeck, C. Linsmeier, J.H. You Max-Planck-Institute for Plasma Physics, EURATOM Association, Garching

- (Germany)
- V. Barabash, ITER CT, Garching (Germany)
- P. Peters, DLR, Cologne (Germany)

<u>contents</u>

- Fusion
- ITER: divertor requirements heat sink material: CuCrZr
- Reactor: divertor requirements —
- Cu-SiC MMC development
- Conclusions

Part of the work has been supported by the European Commission in the frame of the ExtreMat Integrated Project **Extre** Mat

D-T Fusion

Parameter field for a fusion reactor

plasma density (n): >10²⁰ m⁻³ plasma temperature (T): 18 keV (equ. 200 Mio. deg.) energy confinement time (τ): >1 s

plasma volume: approx. 1000 m³ fusion power: 2 GW

Magnetic confinement, tokamak, stellarator

Next step: ITER

ITER Design Parameters

Fusion Power	500 MW
Plasma Volume	837 m ³
Plasma Surface	678 m ²
Heat flux on Divertor	10 (20) MW/m ²
Pulse length	400 s
Number of pulses	~ 30.000

ITER goals:

- Show scientific and technological feasibility of fusion energy for peaceful purposes.
- Test essential technologies in reactor-relevant physics and technology environment.
- Demonstrate safety and environmental acceptability of fusion.

Loading of materials in a fusion device

structural materials

- thermomechanical loads
- electromagnetical loads
- neutron irradiation

plasma facing materials

heat sink materials

bulk plasma:

impurity tolerance (<10⁻⁵ W, 10⁻² Be, C)

tritium inventory:

to be kept low (safety)

divertor target:

- stationary high heat flux 10 (20) MW/m²
- transient heat loads: e.g. disruptions
- highly loaded surface approx. 50 m²
- neutron damage: < 0.5 dpa

Materials for the ITER Plasma Facing Components

Loading conditions for the divertor

	Divertor target ITER	Divertor target Reactor
component	up to 3	(DEMO) 5 year cycle
<u>av. neutron fluence</u> (dpa)	max. 0.5	30
Normal operation		
No. of cycles	10000?	<1000
coolant temperature (°C)	100	300 (600, He)
Surface heat flux (MW/m ²)	10 (20)	1015
ITER		Reactor

ITER Divertor cassette

IPP

Plasma facing armour: Tungsten and CFC

25 mm

150 mm

ITER: Two designs: "Flat tile" and "Monoblock"

CuCrZr (ITER)

ITER Database – Heat sink material

CuCrZr alloy:

- properties depend largely on heat treatment (manufacturing of components).

CuCrZr	Comments	
CHEMICAL COMPOSITION	Detail from Industry	
SPECIFIC HEAT	Generally OK	
THERMAL CONDUCTIVITY	Generally OK, depends on thermal treatment	
THERMAL EXPANSION	Well documented	
ELECTRICAL CONDUCTIVITY	Well documented	
DENSITY	Well documented	
ULTIMATE TENSILE STRENGTH	Generally OK, depends on thermal treatment	
YIELD STRENGTH	- " -	
ELONGATION	- " -	
REDUCTION OF AREA	- " -	
ENGINEERING STRESS-STRAIN	- " -	
YOUNG'S MODULUS	Well documented	
STRESS RUPTURE	Some data exists	
CREEP AT 1%	Some data exists	
FATIGUE	Some data exists, depends on creep	
FRACTURE TOUGHNESS	Some data, better than DS Cu	

Data: ITER Materials Data Handbook

ITER Database – Heat sink material

Data: ITER Materials Data Handbook

ITER Database – Heat sink materials

CuCrZr Alloy, Neutron effects

- For ITER conditions: no change of thermal properties,
- However, loss of ductility is main concern for ITER (low operation temperature), but should pose no problem for reactor conditions (high operation temperature)

Data: ITER Materials Data Handbook

ITER Database – Heat sink materials

CuCrZr Alloy, Neutron effects:

- For reactor conditions irradiation induced creep is main issue

Data: ITER Materials Data Handbook

Performance of components under irradiation EUROMAT C33

Tungsten Macrobrush Mock-Ups

Unirradiated

- 1000 cycles x 8 MW/m² no failure
- 1000 cycles x 14 MW/m² no failure

200°C, PARIDE 4 (0.5 dpa in tungsten)

1000 cycles x 10 MW/m² – overheating
1000 cycles x 14 MW/m² – loss of tiles

CFC Monoblock Mock-Ups

Unirradiated

- 1000 cycles x 19 MW/m² no failure
- 700 cycles x 23 MW/m² no failure,

200°C, 0.2 dpa (in carbon)

- 1000 cycles x 10 MW/m² no failure
- 1000 cycles x 12 MW/m² no failure
- screening at 14 MW/m² surface erosion

Activity: FZ Juelich and HFR, Petten

Comparison of PH alloys and DS Cu

PH Cu alloys	DS Cu alloys		
Thermal stability			
Above ageing temperature overageing: significant decrease of strength. Overageing affects also the thermal conductivity by the dissolution of precipitates.	Inert alumina particles are not prone to coarsening or to dissolution, keeping their hardening effect up to very high temperatures. Properties strongly depend on the production route and are less sensitive to heat treatments.		
Fracture toughness			
FT of unirradiated and irradiated materials decreases with increasing temperature, but remains at a relatively high level.	Very low above 200°C in the unirradiated condition. Fracture toughness of irradiated GlidCop Al25 decreases 2- 3 times compared to unirradiated material.		
Isotropy			
Isotropic mechanical properties.	The short-transverse ductility and fracture toughness is less than in the other two directions.		
Weldability			
Can be welded by TIG and EB and then solution annealed and aged without cold work, recovering 50-70% of the full hardened strength.	Not suitable for structural/leak tight fusion welds. Microstructure is completely destroyed in this case, with unrecoverable loss of strength of the joint. Non-fusion weld should be applied (friction, explosion, etc.).		
Neutron irradiation resistance at high temperature			
The PH alloy microstructure is less stable under irradiation, due to radiation enhanced coarsening of the Cr/Zr precipitates. Irradiation induced creep at >350°C.	DS alloys have a higher stability range, but are also expected to show irradiation induced creep at high temperature.		

Most important: efficient energy conversion

- Water cooled divertor: close to PWR conditions,

water at 300°C, 10 MPa:

new heat sink materials needed

Attractive, higher thermal efficiency:

 He-gas cooled W-based divertor: advanced technology (min. 600°C He at 10 MPa)

open materials questions

Heat sink materials: ITER – reactor (DEMO)

ITER - Divertor

- divertor: 10-15 MW/m²
- coolant: water 80°C
- no energy production
- neutron irradiation
 - \leq 0.5 dpa
- use of available materials

Heat sink: CuCrZr max. operation temperature: 350-400°C

DEMO - Divertor

- divertor: 10-15 MW/m²
- coolant: water ≥ 300°C or helium ~ 600°C
- energy production
- neutron irradiation ~ 30 dpa
- development of new materials

Heat sink: SiC fibre reinforced copper operation temperature: ~ 550°C

aim: composite tensile strength 600-800 MPa at room temperature

important: optimised bonding between the fibre and matrix

- e.g. DLR: titanium matrix composite reinforced with SiC long fibres for aeroplane engines
- interf. shear strength in the range of 70-80 MPa

problem: adhesion between SiC/C and copper

solution: titanium interface layer between SiC fibre and copper matrix

SiC fibre SCS6 (Specialty Materials) Ø 140 μm

- with carbon rich layer at the surface for protection during handling
- optimised for titanium matrix

50 µm

C-core

50 µm

SiC

SiC-fibre

C-rich layer

Processing of MMC - Matrix

Electroplating of copper

• CuSO₄ bath

- room temperature
- 4,5 V
- 8 hours
- fibre volume fraction v_f = 20 %

SiC-fibre with copper layer

galvanic deposition of a 80 μm thick copper layer as matrix

Processing of MMC – Interlayer

Magnetron sputter device

galvanic copper PVD-copper titanium carbon SiC-fibre 5 μm

SEM

- sputter deposition of titanium interlayer
- layer thickness 100-200 nm
- deposition of copper layer protective coating (500 nm)

Phase diagrams

Composite

- coated fibres were consolidated in a copper capsule by hot-isostatic pressing at 650°C for 30 minutes
- maximum pressure 100 MPa

TEM investigation

TEM image of interface (PyC)

- EELS: formation of TiC
- formation of a rough interface
- chemical and mechanical bonding between C and Cu

- plane pyrolytic carbon substrate (PyC)
- 100 nm Ti + 500 nm Cu
- heat treatment at 650°C/ 1h

EELS (electron energy-loss spectroscopy)

See also Poster by MPI Halle (Woltersdorf, Pippel, Brendel, Bolt), C11

XRD Investigations

IPP

view through magnifying glass

fibres

SiC fibre reinforced copper without titanium interlayer

Sample thickness 2.4 mm

SiC fibre reinforced copper with titanium interlayer

Sample thickness 0.9 mm

Evaluation acc. to: Rausch, Meier & Grathwohl, Journal of the European Ceramic Society 10 (1992) 229-235

Push-Out Test - SEM

without titanium interlayer

no plastic deformation of matrix after push-out test

> front side after pushout test

with titanium interlayer

without titanium interlayer

with titanium interlayer

- sample length 70 mm with thread at the ends
- gauge length 10 mm
- diameter in gauge length 3.5 mm (fibre reinforced zone)

Tensile Test - SEM

Composite without titanium

Fibre pull out in the composite without titanium interlayer indicates a weak bonding between fibres and matrix.

Composite with titanium

Analysis of back scattered electrons shows carbon at the matrix for composites with titanium after tensile test.

Thermomechanics of Cu-SiC FRMMCs

Copper alloy heat sink

- Open question: plastic stability of the FRMMC under cyclic heat flux loads ?
- Investigation issue: determination of loading limit for plastic instability (shakedown / ratchetting)
- Shakedown analysis;
 SD limit as design criterion?
- Implications on design

Tensile strength (MPa)	CTE (×10 ⁻⁶)	Young's modulus (GPa)
FMMC laminate: 600 (//)	W: 3.9	W: 398
CuCrZr: 400 at RT	FMMC laminate: 12.4 (//)	FMMC laminate: 165 (//)
	CuCrZr: 15.5	CuCrZr: 128

Component thermomechanics under high heat flux loading

 Σ_{v} [MPa]

Alternative design: Composite coolant tubes

- Merits of this design
- works with CuCrZr tube for cold ITER loading conditions
- basic component fabrication technology already developed
- Motivation
- strengthen the tube for coolant temperature up to 320 °C
- reduce the thermal stress
- Issues:
- fabrication of fiber-reinforced composite tubes
- simulation techniques for 'design by analysis'

Summary: Heat sink materials for fusion

Summary: New materials are needed for fusion

JET (fusion power 16 MW, 2 s)

ITER (fusion power 500 MW, 400 s)

reactor (DEMO)

(fusion power >2000 MW, stationary)

ITER

power reactor

relative size	1	11.2
fusion power (MW)	500	2000
power to He-ions (MW)	100	400
total thermal power (MW)		2600
electric power (MW)		1000
efficiency (%)		38
neutron damage (dpa)	5	120 in 5y

Push-Out-Test

Ref.: Rausch, Meier & Grathwohl, Journal of the European Ceramic Society 10 (1992) 229-235

Properties

Thermal cycling

Composite without titanium

Composite with titanium

120 cycles between 350°C and 550°C

